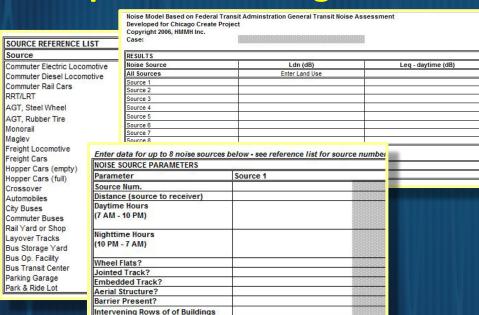


Utilization of Improved Technologies to Streamline Rail Transit Noise Analyses

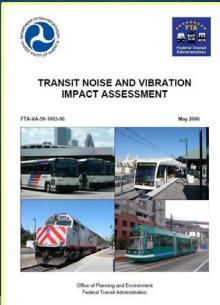
Transportation Research Board ADC40

July 22, 2014

Abstract


Background

CREATE*


(Chicago Rail Efficiency And Transportation Efficiency)

What: Spreadsheet Calculator for Rail Noise

Purpose: Following FTA Guidance Manual (2006)

CREATE*

Calculates:

- → L_{dn} or L_{eq} for a Single Receiver
- > From Up to 8 Different Sources

Noise Model Based on Federal Transit Adminstration General Transit Noise Assessment

Developed for Chicago Create Project

Copyright 2006, HMMH Inc.

Case:

RESULTS	100 00	111	1.1.1.111
Noise Source	Ldn (dB)	Leq - daytime (dB)	Leq - nighttime (dB)
All Sources	Enter Land Use		and the state of t
Source 1			
Source 2			
Source 3			
Source 4			
Source 5			
Source 6			
Source 7			
Source 8			

Enter noise receiver land use category below.

LAND USE CATEGORY

Noise receiver land use category (1, 2 or 3)

CREATE*

Calculates:

→ L_{dn} or L_{eq} for a Single Receiver → Based on Source and Path Parameters

NOISE SOURCE PARAMETERS	100	5	Section 1	
Parameter	Source 1	 Source 2	Source 3	1-2
Source Num.				
Distance (source to receiver)				
Daytime Hours				
(7 AM - 10 PM)				
Nighttime Hours				
(10 PM - 7 AM)				
and the continue of the	1+1			
Wheel Flats?				
Jointed Track?				
Embedded Track?	1			
Aerial Structure?				
Barrier Present?				
Intervening Rows of of Buildings				

CREATE*

Calculates:

> From a Menu of 23 Source Types

SOURCE REFERENCE LIST	999-793-744-1
Source	Number
Commuter Electric Locomotive	1
Commuter Diesel Locomotive	2
Commuter Rail Cars	3
RRT/LRT	4
AGT, Steel Wheel	5
AGT, Rubber Tire	6
Monorail	7
Maglev	8
Freight Locomotive	9
Freight Cars	10
Hopper Cars (empty)	11
Hopper Cars (full)	12
Crossover	13
Automobiles	14
City Buses	15
Commuter Buses	16
Rail Yard or Shop	17
Layover Tracks	18
Bus Storage Yard	19
Bus Op. Facility	20
Bus Transit Center	21
Parking Garage	22
Park & Ride Lot	23

Methodology:

Screening Procedure:

t, and the environmental setting. The technical content of each of the three levels is document, but a summary of each level is given in the following paragraphs:

whether there is likely to be impact. It also serves to determine the noise and vibration study areas for further analysis when sensitive locations are present. The screening process may be all that is required for many of the smaller transit projects which qualify as categorical exclusions. When noise/vibration-sensitive receivers are found to be present, there are two levels of quantitative analysis available to ed for mitigation measures.

General Assessment:

s location and estimated severity of noise and vibration impacts in the lentified in the screening procedure. For major capital investments, the

General Assessment provides the appropriate level of detail to compare alternative modes and alignments in alternatives analysis. It can be used in conjunction with established highway noise prediction procedures to compare and contrast highway, transit and multimodal alternatives. Before basic decisions have been reached on mode and alignment in a corridor, it is not prudent to conduct the most detailed level of noise and vibration analysis. For smaller transit projects, this level is used for a closer

le impacts as a result of screening. For many smaller projects, cts and determine whether mitigation is necessary.

Detailed Analysis:

ough an in-depth analysis usually only performed for a single and mitigation measures for the preferred alternative in major

investment projects during preliminary engineering. For other smaller projects, Detailed Analysis may be warranted as part of the initial environmental assessment if there are potentially severe impacts due to close proximity of sensitive land uses.

Methodology:

Screening Procedure:

t, and the environmental setting. The technical content of each of the three levels is document, but a summary of each level is given in the following paragraphs:

Identifies noise- and vibration-sensitive land uses in the vicinity of a project and whether there is likely to be impact. It also serves to determine the noise and vibration study areas for further analysis when sensitive locations are present. The screening process may be all that is required for many of the smaller transit projects which qualify as categorical exclusions. When noise/vibrationcancitive receivers are found to be present, there are two levels of quantitative analysis available to ed for mitigation measures.

General Assessment:

s location and estimated severity of noise and vibration impacts in the lentified in the screening procedure. For major capital investments, the

General Assessment provides the appropriate level of detail to compare alternative modes and alignments in alternatives analysis. It can be used in conjunction with established highway noise prediction procedures to compare and contrast highway, transit and multimodal alternatives. Before basic decisions have been reached on mode and alignment in a corridor, it is not prudent to conduct the most detailed level of noise and vibration analysis. For smaller transit projects, this level is used for a closer

> le impacts as a result of screening. For many smaller projects, cts and determine whether mitigation is necessary.

ough an in-depth analysis usually only performed for a single

and mitigation measures for the preferred alternative in major

investment projects during preliminary engineering. For other smaller projects, Detailed Analysis may be warranted as part of the initial environmental assessment if there are potentially severe impacts due to close proximity of sensitive land uses.

Define

Detailed Analysis:

Methodology:

Identifi

Screening Procedure:

t, and the environmental setting. The technical content of each of the three levels is document, but a summary of each level is given in the following paragraphs:

whether there is likely to be impact. It also serves to determine the noise and vibration study areas for further analysis when sensitive locations are present. The screening process may be all that is required for many of the smaller transit projects which qualify as categorical exclusions. When noise/vibration-sensitive receivers are found to be present, there are two levels of quantitative analysis available to ed for mitigation measures.

General Assessment:

s location and estimated severity of noise and vibration impacts in the lentified in the screening procedure. For major capital investments, the

General Assessment provides the appropriate level of detail to compare alternative modes and alignments in alternatives analysis. It can be used in conjunction with established highway noise prediction procedures to compare and contrast highway, transit and multimodal alternatives. Before basic decisions have been reached on mode and alignment in a corridor, it is not prudent to conduct the most detailed level of noise and vibration analysis. For smaller transit projects, this level is used for a closer

le impacts as a result of screening. For many smaller projects, cts and determine whether mitigation is necessary.

Detailed Analysis:

ough an in-depth analysis usually only performed for a single and mitigation measures for the preferred alternative in major

investment projects during preliminary engineering. For other smaller projects, Detailed Analysis may be warranted as part of the initial environmental assessment if there are potentially severe impacts due to close proximity of sensitive land uses.

Methodology:

Screening Procedure:

t, and the environmental setting. The technical content of each of the three levels is document, but a summary of each level is given in the following paragraphs:

whether there is likely to be impact. It also serves to determine the noise and vibration study areas for further analysis when sensitive locations are present. The screening process may be all that is required for many of the smaller transit projects which qualify as categorical exclusions. When noise/vibration-sensitive receivers are found to be present, there are two levels of quantitative analysis available to ed for mitigation measures.

General Assessment:

s location and estimated severity of noise and vibration impacts in the ientified in the screening procedure. For major capital investments, the

General Assessment provides the appropriate level of detail to compare alternative modes and alignments in alternatives analysis. It can be used in conjunction with established highway noise prediction procedures to compare and contrast highway, transit and multimodal alternatives. Before basic decisions have been reached on mode and alignment in a corridor, it is not prudent to conduct the most detailed level of noise and vibration analysis. For smaller transit projects, this level is used for a closer

le impacts as a result of screening. For many smaller projects, cts and determine whether mitigation is necessary.

Detailed Analysis:

ough an in-depth analysis usually only performed for a single and mitigation measures for the preferred alternative in major

investment projects during preliminary engineering. For other smaller projects, Detailed Analysis may be warranted as part of the initial environmental assessment if there are potentially severe impacts due to close proximity of sensitive land uses.

*not any more...

CREATE Algorithm:

- Each Source Calc =33 Layers / Steps
- Calculate 8 Sources = 422 Columns*

Term	Sou 1	Sou 2	Sou 3	Sou 4	Sou 5	Sou 6	Sou 7	Sou 8
SELref	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
C1 - Coef	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
C1 - Denom	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
C1 - Day Num	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C1 - Night Num	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C1 - Day	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
C1 - Night	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
C2 - Coef	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
C2 - Denom	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
C2 - Day Num	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C2 - Night Num	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C2 - Day	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
C2 - Night	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
C3 - Coef	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
C3 - Denom	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
C3 - Day Num	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C3 - Night Num	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
C3 - Day	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
C3 - Night	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Leq50ft - Day	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Leq50ft - Night	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Ldn50ft	6.4	6.4	6.4	6.4	6.4	6.4	6.4	6.4
Dist Coef	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Adj. Dist	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Adj. Wheel Flats	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Adj. Jointed	0	0	0	0	0	0	0	0
Adj. Embed	0	0	0	0	0	0	0	0
Adj. Aerial	0	0	0	0	0	0	0	0
Adj. Shield	0	0	0	0	0	0	0	0
Leq - Day	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Leq - Night	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Ldn	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Need Land Use	1							
Calc Leg	0							

*Excel 2003 Worksheet Limit = 256

CREATE Calculator Returns Single Result

One Receptor

One Condition (Existing, No-Build, Build, Alternatives)

DETAILED ANALYSIS = TOO MUCH WORK

General Assessment

Distance – Based

Acoustics Not Always Homogeneous

GENERAL = "FINAL"

because

DETAILED = DIFFICULT*

*Time-consuming, inefficient, tedious...

Detailed Analysis

IF Comprehensive = Time Consuming

IF Cursory = Subjective

Also, SOMETIMES...

DETAILED ANALYSIS # GENERAL ASSESSMENT

PROBLEM STATEMENT

HOW to EFFICIENTLY
MAKE

DEFENSIBLE

- CONSISTENT & ACCURATE -

DETERMINATIONS of

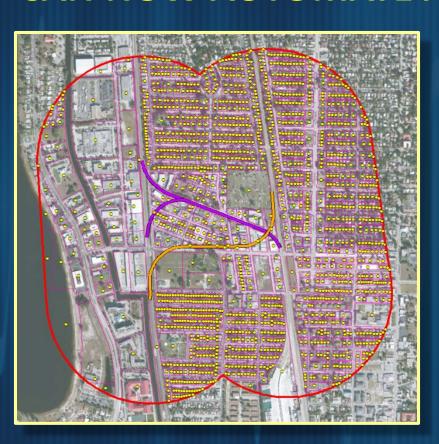
- IMPACTS & ABATEMENT?

PROBLEM STATEMENT

-ORCAN

DETAILED ANALYSIS
BE EASIER THAN / SAME AS
GENERAL ASSESSMENT?

HYPOTHESIS


ADVANCEMENTS IN: GIS-AND- CALCULATIONS **MAKE DETAILED ANALYSIS SAME / EASIER THAN GENERAL ASSESSMENT**

<u>GIS</u>

CAN NOW AUTOMATE ALL RECEPTOR DATA:

- > X,Y,Z
- **DISTANCES**
- **LAND USES**
- BUILDING
 ROWS

GIS

CAN INTEGRATE SOURCE TO PROJECT DATA:

Num	Desc		Ref SEL	Dist Term	Desc1	Denom1	Min1	Coef1	Desc2	Denom2	Min2	Coef2	Desc3	Denom3	Min3	Coef3	Jointed	Embedded	Aerial	Barrier	Combine 1&2?
1	Commuter Electric Locomotive		90	15	speed (mph)	50	20	10.0	trains/hour	1	0.01	10.0	locos/train	1	1	10	5.0	3.0	4.0	-5.0	0.0
2	Commuter Diesel Locomotive		92	15	speed (mph)	50	20	-10.0	trains/hour	1	0.01	10.0	locos/train	1	1	10	5.0	3.0	4.0	-5.0	0.0
3	Commuter Rail Cars		82	15	speed (mph)	50	20	20.0	trains/hour	1	0.01	10.0	cars/train	1	1	10	5.0	3.0	4.0	-5.0	0.0
4	RRT/LRT AGT, Steel Wheel		82 80	15 15	speed (mph) speed (mph)	50 50	20	20.0	trains/hour trains/hour	1	0.01	10.0	cars/train	1	1	10 10	5.0	3.0	4.0	-5.0 -5.0	0.0
	AGT, Rubber Tire		78	15	speed (mph)	50	20	20.0	trains/hour	1	0.01	10.0	cars/train	1	1	10				-5.0	0.0
7	Monorail		82	15	speed (mph)	50	20	20.0	trains/hour	1	0.01	10.0	cars/train	1	1	10				-5.0	0.0
8	Maglev		72	15	speed (mph)	50	20	20.0	trains/hour	1	0.01	10.0	cars/train	1	1	10			4.0	-5.0	0.0
9	Freight Locomotive		97	15	speed (mph)	40	20	10.0	trains/hour	1	0.01	10.0	locos/train	1	1	10	5.0	3.0	4.0	-5.0	0.0
10	Freight Cars		100	15	speed (mph)	40	20	20.0	trains/hour	1	0.01	10.0	length of cars (ft) / train	2000	40	10	5.0	3.0	4.0	-5.0	0.0
11	Hopper Cars (empty)		104	15	speed (mph)	40	20	20.0	trains/hour	1	0.01	10.0	length of cars (ft) / train	2000	40	10	5.0	3.0	4.0	-5.0	0.0
12 13	Hopper Cars (full)		100	15 25	speed (mph) trains/hour	40	0.01	20.0	trains/hour	3600	0.01	10.0	length of cars (ft) / train	2000	40	10	5.0	3.0	4.0	-5.0 -5.0	0.0
	Crossover Automobiles		73	15	speed (mph)	50	30	10.0	duration of one train (sec) vehicles/hour	3000	0.01	10.0						3.0	4.0	-5.0	0.0
	City Buses		84	15	speed (mph)	50	30	23.9	vehicles/hour	1	0.01	10.0								-5.0	0.0
16	Commuter Buses		88	15	speed (mph)	50	30	14.6	vehicles/hour	1	0.01	10.0								-5.0	0.0
17	Rail Yard or Shop		118	25	trains/hour	20	0.01	10.0												-5.0	0.0
18	Lavover Tracks		109	25	trains/hour	1	0.01	10.0												-5.0	0.0
19 20	CONDITION:				=NEED						- 8										
21 22	EXISTING								URCE INPUT		- 60										
23	P				=CALC	FROM	GIS &	PROJE	CT DATA		-										
																			111		
	Source		1			2					3			-	4						
	Source Value	#N/	/A		0			#	N/A	0		#N/A			0		#N/A				0
	CL Dist	Dist.Source1 to	CL		0	1	Dist.Sou	irce2 t	to CL	0		Dist.Source3 to CL			0		Source	e4 to CL			0
	Day Val1	#N/	/A		0			#	N/A	0			#N/A		0			#N/A		- 3	0
	Day Val2	#N/	/A		0			#	N/A	0			#N/A		0		#N/A				0
	Day Val3	#N/	/A		0			#	N/A	0			#N/A		0			#N/A			0
	Night Val1	#N/	/A		0			#	N/A	0			#N/A		0			#N/A		i i	0
	Night Val2	#N/	/A		0			#	N/A	0			#N/A		0			#N/A		3	0
	Night Val3	#N/	/A		0		3	#	N/A	0			#N/A		0			#N/A			0
										0.00%											0.00%
	Equip. & Track	Joined Track			N		Joined	rack		N	Jo	ined T	rack		N	Join	ed Trac	ck			N
	Conditions	Embedded Track	k		N		mbedo	ed Tra	ick	N	En	nbedde	ed Track		N	Emb	edded	Track		1	N
		Aerial Structure			N	,	Aerial S	tructu	re	N	Ae	erial St	ructure		N	Aer	ial Stru	cture			N
		Y			-	-								- 1		4				-	

CAN EXPAND CALC TO A SINGLE ROW:

(Allows calculation of multiple receptors on single sheet)

_																_		
- 2	A	С	D	E	F	G	Н	1	J	K	L	M	N	PD	PE	PF		
1	2000	=NEED FROM GIS						1						1				
2			IECT DESIGN OR FI	LD DATA														
3	EXISTING	=CALC FROM GIS 8	& PROJECT DATA															
4														SOURCE 8 Levels				
5	Rec No.	X	Υ	Z	Land Cat.	D.U.s	CL Dist	Barrier (?)	# Bldg Rows	Leg(h)	Ldn	Leg(day)	Leg(night)	Leg Day	Leg Night	Ldn		
1576	R-1571	964580.32	873262.13	15.27		3	1 880.	5 N	6		9			0.0	0.0	0.0		
1577	R-1572	963871.41	873284.91	16.06		3	1 182.14	4 N	1		9			0.0	0.0	0.0		
1578	R-1573	963790.53	873291.02	15.91		3	1 102.9	N e	0		9			0.0	0.0	0.0		
1579	R-1574	963818.12	873137.99	15.72		3	1 108.3	N e	0		9			0.0	0.0	0.0		
1580	R-1575	963886.45	873132.87	15.45		3	1 175.2	9 N	1	9	9			0.0		0.0		
	R-1576	963890.01	872937.68	15.48	()	1 150.9		1					0.0		0.0		
	R-1577	963837.66	872944.21	15.81		3	1 100.0		0		_			0.0		0.0		
	R-1578	963871.09	872776.97	15.77	- 2		1 109.2		0		9	-	9			0.0		
	R-1579	963883.85	873808.13	15.61	- 2	2	1 261.8		0		9					0.0		
	R-1580	963780.25	873698.98	16.01			1 144.5		0		9	9	9			0.0		
	R-1581	963898	873557.6	16	()	1 246.4		1					0.0		0.0		
	R-1582	963794.81	873560.76	16	- 2	2	1 144.1		0		9		9			0.0		
	R-1583	963895.21	873443.82	16			1 228.5		1		9	9	9			0.0		
	R-1584	963950.77	873695.37	15.87		3	1 313.3		1		4	_		0.0		0.0		
	R-1585	963953.36	873809.16	15.51	- 2	2	1 330.8		1		9		-			0.0		
	R-1586	964403.08	872500.59 872490.2	15.34 15.31			1 596.3 1 556.2				9					0.0		
	R-1587 R-1588	964364.03 964315.55	872478.28	15.31			1 556.2		6		9		-			0.0		
	R-1589	964016.52	872467.08	15.27	-		1 209.0		0			9	9	0.0		0.0		
	R-1509	963043.25	872466.29	28.22	3		1 754.4		11		9	9	9			0.0		
	R-1591	964683.26	872769.89	14.01			1 912.1		8			-	- 3	0.0		0.0		
	R-1592	964688.7	872918.26	14.07			1 938.		8		1			0.0		0.0		
	R-1593	964573.64	872758.06	14.55			1 801.9		8	-				0.0		0.0		
	R-1594	964551.84	872902.37	14.27			1 800.9		7		1			0.0		0.0		
	R-1595	964528.27	872977.93	14.31	4		1 788.4		7		1			0.0		0.0		
	R-1596	964556.64	873118.67	14.94		3	1 836.5		6		9			0.0		0.0		
	R-1597	964881.93	873111.78	14.08		3	1 1157.5		9		9			0.0		0.0		
	R-1598	964932.01	873110.72	13.42		3	1 1206.9	3 N	9	9)			0.0	0.0	0.0		
1604	R-1599	964979.96	873118.13	12.22		3	1 1255.	5 N	11	9	9			0.0	0.0	0.0		
1605	R-1600	965021.53	873152	12		3	1 1301.4	3 N	- 11		9			0.0	0.0	0.0		
1606	R-1601	964779.28	872956.36	14.01		3	1 1033.79	N e	8		9			0.0	0.0	0.0		
1607	R-1602	964828.63	872955.32	14		3	1 1082.4	3 N	9	(9			0.0		0.0		
	R-1603	964777.57	872881.34	14	- 3	3	1 1021.3		8		9			0.0		0.0		
	R-1604	964825.18	872883.31	14		3	1 1068.79		9					0.0		0.0		
	R-1605	964915.67	872973.42	13.87		3	1 1171.2		11					0.0		0.0		
	R-1606	964760.7	872781.39	14.01		3	1 990.4		9					0.0		0.0		
1612	R-1607	960211.95	873405.1	9.37		3	1 3430.8	S N	1	9	9			0.0	0.0	0.0		

CAN LINK ALL CASES TO CALCULATE IMPACTS:

(Use Equations*, Not Graphs)

		EXISTIN	G - CALC			NO-	BUILD		BUIL	.D (ADD'L	TRAINS C	NLY)	МС	DERAT	E IMPAC	TS = 57	SEVERE IMPACTS = 23			
Rec No.	Leq(h)	Ldn	Leq(day)	Leq(night)	Leq(h)	Ldn	Leq(day)	Leq(night)	Leq(h)	Ldn	Leq(day)	Leq(night)	Cat1, Cat2	Cat3	Lp	MOD IMP?	Cat1, Cat2	Cat3	Lp	SEV IMP?
R-0001	9				9	9			26			. 111	. 56	3	61	61		32 6	37	67
R-0002													65		70				30	
R-0003		10	17	11									65		70	9			30	
R-0004	9			3	9	9			27				56	3	61	61	6	52 6	37	67
R-0005	9				9	9			24				. 56	3	61	61		32 6	37	67
R-0006	9				9	9			24				56	3	61	61	6		57	67
R-0007		9	9	9		3	9 9	9	7	38		32	61	1	66	61			72	67
R-0008		9	9	9			9 9	9	1	38			61	1	66	61	(57 7	72	67
R-0009		9	9	9			9 9	9		37			61	1	66	61			72	67
R-0010		9	9	9		9	9 9	9		39			61	1	66	61			72	67
R-0011		9	9	9		1	9 9	9		39		33	61	1	66	61	6	37	72	67
R-0012		9	9	9		1 2	9 9	9	į.	39	26	33	61	1	66	61	- 6	57 7	72	67
R-0013		9	9	9			9 9	9		39			61	1	66	61	6	37 7	72	67
R-0014		9	9	9		9	9 9	9		39			61	1	66	61	- 6		72	67
R-0015		9	9	9		1	9 9	9		39			61	1	66	61	6	37	72	67
R-0016		9	9	9			9 9	9	į.	39			61	1	66	61			72	67
R-0017		9	9	9			9 9	9		39	27	34	61	1	66	61	6	37	72	67
R-0018		9	9	9		1 8	9 9	9		39	27	34	61	1	66	61	6	57 7	72	67
R-0019		9	9	9		1 3	9 9	9		39	27	34	61	1	66	61	6	37	72	67
R-0020	9			35	9	9			24		8		56	3	61	61			37	67
R-0021													65	5	70		7	75 8	30	
R-0022													65		70				30	
R-0023	9	-	1		9	9			39				56		61	61			67	67
R-0024	9			3		9			40		2		56	3	61	61	(32 6	37	67
R-0025	9					9			55				. 56	3	61	61	- 6	52 6	57	67
R-0026		9	9	9	9		9 9	9	700	68	56	62	61	1	66	61 1	- 6	37 7	72	67 1
R-0027		9	9	9		1 3	9 9	9		67	54	61	61	1	66	61 1	- 6	57 7	72	67 1
R-0028		9	9	9			9 9	9		70	57	64	61	1	66	61 1	- 6	37 7	72	67 1
R-0029		9	9	9			9 9	9		67	54	61	61	1	66	61 1		57 7	72	67 1
R-0030	9				9	9		7.1	56		-		56	3	61	61	6	32 6	37	67
R-0031		9	9	9		1 3	9 9	9		41	29	35	61	1	66	61		37 7	72	67

*Ref: FTA Transit Noise and Vibration Impact Assessment, pg. B-5

GIS

UTILIZE (NOW) TYPICALLY EXISTING RESOURCES:

Parcels

Centerline Alignment Data

Land Use

DEM (Digital Elevation Model)

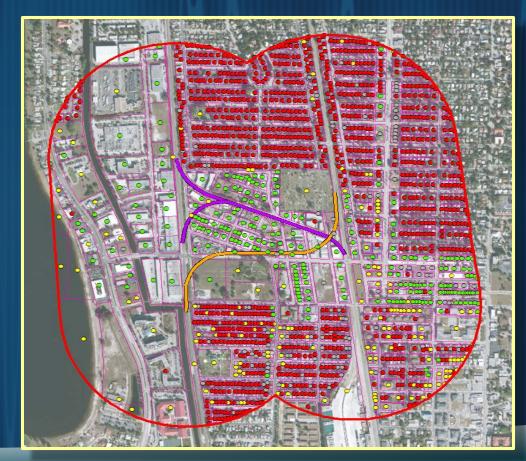
Topo

<u>GIS</u>

GENERATE STUDY AREA:

Buffer Centerline(s)

Clip PARCEL Layer



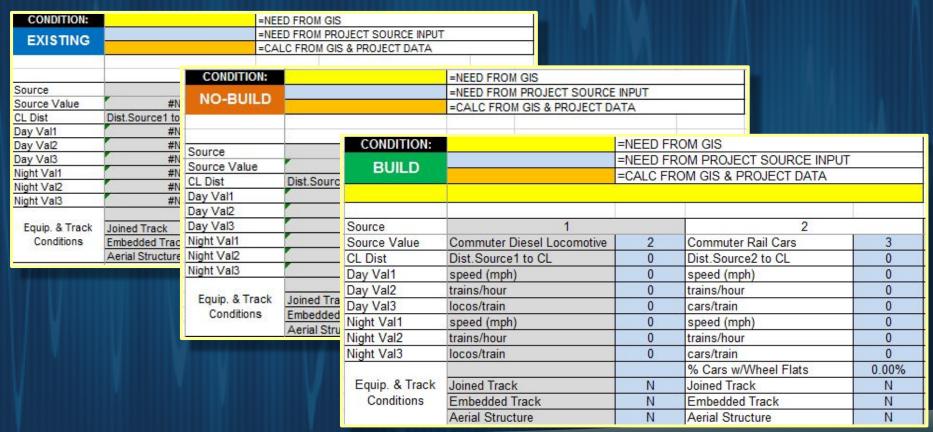
GIS

Land Use Data to Parcel Data

Assign Land Use Values*

JOIN:

FORM RECEPTOR LAYER ATTRIBUTES:


> X,Y,Z¹

- **▶**Building Rows¹
 - **→** Distances²

1.RK&K custom-developed tools

POPULATE INPUT TABLES:*

LINK INPUT TO CALCULATIONS

CONDITION:									
BUILD									
Rec No.	Land Cat.	D.U.s	CL Dist	Barrier (?)	# Bldg Rows	Leq(h)	Ldn	Leq(day)	Leg(night)
R-0001	3	1	3458.16	N	3	26	-:		-
R-0002	4	1	3517.12	N	3	3.358			
R-0003	4	1	2000.8	N	3	1			
R-0004	3	1	3330.51	N	2	27			
R-0005	3	1	3573.41	N	4	24			
R-0006	3		3502.9	N	4	24			
R-0007	2	1	3169.02	N	4	11	38	25	32
R-0008	2	1	3190.42	N	4		38	25	32
R-0009	2	1	3220.35	N	4		37	25	32
R-0010	2	1	3351.56	N	3		39	26	33
R-0011	2	1	3297.88	N	3		39	26	33
R-0012	2	1	3209.3		3		39	26	33
R-0013	2	1	3096.21	N	3		39	26	33
R-0014	2	. 1	3064.63	N	3		39	26	33
R-0015	2	1	3027.31	N	3		39	27	33
R-0016	2	1	3076.5	N	3	1	39	26	33
R-0017	2	1	3006.81	N	3	į.	39	27	34
R-0018	2		2999.01	N	3		39	27	34
R-0019	2	1	2969.02	N	3		39	27	34
R-0020	3	1	3371.68	N	4	24			
R-0021	4	. 1	1733.91	N	0		-3	-:	-:
R-0022	4		880.85	N	0				
R-0023	3	1	1369.74	N	0	39			
R-0024	3	1	1158.17	N	0	40			
R-0025	3	1	116.89	N	0	55			-3
R-0026	2	1	111.87	N	0		68	56	62
R-0027	2	1	138.44	N	0		67	54	61
R-0028	2	1	84.39	N	0		70	57	64
R-0029	2	1	138.8	N	0		67	54	61
R-0030	3	1	110.73	N	0	56	A***		

LINK CASES TO CALCULATE IMPACTS*

		EXISTI	NG - CALC			NO	D-BUILD		BUILD (ADD'L TRAINS ONLY)					MODERATE IMPACTS = 57					SEVERE IMPACTS = 23				
Rec No.	Leq(h)	Ldn	Leq(day)	Leq(night)	Leq(h)	Ldn	Leq(day)	Leq(night)	Leq(h)	Ldn	Leq(day)	Leq(night)	Cat1, Cat2	Cat3	Lp	MOD IMP?	Cat1, Cat2	Cat3	Lp	SEV IMP?			
R-0001	9	9				9			2	3			56	61	61		62		67	67			
R-0002													65	70			75		80				
R-0003													65	70	6	0	75		80				
R-0004	9	9		- 8		9			2	7			56	61	61	8	62		67	67			
R-0005	9	9				9			2	4			56	61	61		62		67	67			
R-0006	9	9				9			2	4			56	61	61		62		67	67			
R-0007			9 9	9			9 9	9		3	3 25	32	6	1 66	61		67		72	67			
R-0008			9 9	9			9 9	9	į	3			6	1 66	61	8	67		72	67			
R-0009			9 9	9			9 9	9		3	7 25	32	6	1 66	61		67		72	67			
R-0010			9 9	9			9 9	9		35			6	1 66	61		67		72	67			
R-0011			9 9	9			9 9	9	7	35	26	33	6	1 66	61		67		72	67			
R-0012			9 9	9			9 9	9		35	26	33	6	1 66	61	8	67		72	67			
R-0013			9 9	9			9 9	9		35	26	33	6	1 66	61		67		72	67			
R-0014		1	9 9	9			9 9	9		35		33	6	1 66	61		67		72	67			
R-0015			9 9	9			9 9	9	7	39	27	33	6	1 66	61		67		72	67			
R-0016			9 9	9		- 1	9 9	9	į.	35			6	1 66	61		67		72	67			
R-0017			9 9	9		3	9 9	9		3	27	34	6	1 66	61	12	67		72	67			
R-0018			9 9	9			9 9	9		3	27	34	6	1 66	61		67		72	67			
R-0019		9	9 9	9	3		9 9	9	17	3	27	34	6	1 66	61	10	67		72	67			
R-0020	9	9		35		9			2	4	8	4	56			8	62		67	67			
R-0021													65			67	75		80				
R-0022													6				75		80				
R-0023		9	9	11		9			3				56				62		67	67			
R-0024	9	9		1		9			4		8		56				62		67	67			
R-0025	9	9				9			5				. 56				62		67	67			
R-0026			9 9	9			9 9	9		6			6				67		72	67 1			
R-0027			9 9	9			9 9	9	-	6			6			1	67		72	67 1			
R-0028			9 9	9			9 9	9	2	7		64	6			1	67		72	67 1			
R-0029			9 9	9			9 9	9		6	7 54	61	6	1 66	61	1	67		72	67 1			
R-0030		9				9			5	3	700		56				62		67	67			
R-0031			9 9	9			9 9	9	7	4	1 29	35	6	1 66	61	0	67		72	67			

GIS

EXPORT BACK TO GIS

RESULTS

DETAILED ANALYSIS TOOL

Microsoft® Office-Based

(Common Licensing Requirements)

FTA-Compliant

(Uses CREATE Algorithm)

RESULTS

INTEGRATED GIS RESULTS esri ArcReader Compatible

(No Licensing Requirements to View)

Project & Municipal Use

(Formatted for Web Publishing)

BENEFITS

RECEPTORS EQUAL CONSIDERATION

(Defensible)

ACCOMMODATE LARGE STUDY AREAS

ADDRESS VARYING ACOUSTICS

BENEFITS

FLEXIBLE FOR PROJECT CHANGES

(Parameter input changes = automatically updated calculations & GIS)

NOISE PROACTIVE, NOT REACTIVE

RESULTS ACCESSIBLE, VISIBLE

CONCLUSION STATEMENT

ADVANCEMENTS IN

GIS-AND-CALCULATIONS*

HAVE MADE POSSIBLE FOR

DETAILED ANALYSIS

TO BE SAME / EASIER THAN

GENERAL ASSESSMENT

QUESTIONS?